Python itertools module is a collection of tools for handling iterators. of 7 runs, 10 loops each), # 31.6 ms ± 725 µs per loop (mean ± std. dev. dev. itertools.product () falls under the category called Combinatoric iterators of the Python itertools library. dev. dev. of 7 runs, 10 loops each), # 91.4 ms ± 276 µs per loop (mean ± std. """Returns the sequence elements and then returns None indefinitely. Raise an IndexError if the underlying iterator doesn't, 現在の安定板リリースの Python ドキュメント. Like __builtin__.iter(func, sentinel) but uses an exception instead, bsddbiter = iter_except(db.next, bsddb.error, db.first), heapiter = iter_except(functools.partial(heappop, h), IndexError), dictiter = iter_except(d.popitem, KeyError), dequeiter = iter_except(d.popleft, IndexError), queueiter = iter_except(q.get_nowait, Queue.Empty), "Random selection from itertools.product(*args, **kwds)", "Random selection from itertools.permutations(iterable, r)", "Random selection from itertools.combinations(iterable, r)", "Random selection from itertools.combinations_with_replacement(iterable, r)", """Inspect the i-th upcomping value from a tee object. itertools.product (*iterables [, repeat]) 入力イテラブルの直積(Cartesian product)です。 ジェネレータ式の入れ子になった for ループとおよそ等価です。たとえば product(A, B) は ((x,y) for x in A for y in B) と同じものを返します。 - Stack Overflow, python - itertools.product slower than nested for loops - Stack Overflow, Pythonのtimeitモジュールで処理時間を計測, Pythonで文字列のリスト(配列)の条件を満たす要素を抽出、置換, Pythonでリストとタプルを相互に変換するlist(), tuple(), Pythonリスト型の二次元配列の行と列を入れ替える(転置), Pythonで複数のリストに共通する・しない要素とその個数を取得, Pythonのリスト(配列)の特定の要素を抽出、置換、変換, Pythonでリスト(配列)の要素を削除するclear, pop, remove, del, Python, zip関数の使い方: 複数のリストの要素をまとめて取得, Pythonで2次元配列(リストのリスト)をソート, Pythonでflatten(多次元リストを一次元に平坦化), Pythonのリストと配列とnumpy.ndarrayの違いと使い分け, Pythonで辞書のリストから特定のキーの値のリストを取得, Pythonのin演算子でリストなどに特定の要素が含まれるか判定, Python, enumerateの使い方: リストの要素とインデックスを取得, Pythonでリストの最大値・最小値から順にn個の要素を取得, Pythonデータサイエンスハンドブック, Pythonによるデータ分析入門 第2版, 同じリストを繰り返し使用: 引数, 多重ループ(ネストしたループ)との速度比較. One such tool in Python that advocates the idea of it being efficient is the use of itertools.product () which computes the cartesian product of input iterables. Roughly equivalent to nested for-loops in a generator expression. Comparing nested for loop performance with itertools product and other approaches - performance_for_loops.py Skip to content All gists Back to GitHub Sign in Sign up Instantly share code, notes, and snippets. # izip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-, # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC, # permutations(range(3)) --> 012 021 102 120 201 210, # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy, # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111, # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000, # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4, "Return first n items of the iterable as a list", "Advance the iterator n-steps ahead. It takes any number of iterables as arguments and returns an iterator over tuples in the Cartesian product: It takes any number of iterables as arguments and returns an iterator over tuples in the Cartesian product: ®ã¯ãŸã‹ã ã‹æ•°åms程度。速度が重要な場合は多重ループ、特に速度を重視しない場合であればitertools.product()を使ってコードの見通しをよくする、というように状況に応じて使い分ければよいだろう。, # , # 30.8 ms ± 910 µs per loop (mean ± std. from itertools import product a = [1, 2, 3] b = [4, 5] c = list(product(a, b)) print(c) >>> [ (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)] Note that this is exactly equivalent to a nested for loop, except that it takes up way fewer lines. dev. """Repeat calls to func with specified arguments. of 7 runs, 10 loops each), # 95.7 ms ± 4.05 ms per loop (mean ± std. dev. Pythonにおける多重ループは以下のように書ける。Pythonではインデントでブロックを表すので、さらにインデントを加えるだけ。 多重ループの内側のループでbreakした場合、内側のループから抜け出すのみで、外側のループ処理は続行される。 以下、内側のループの中からすべてのループを抜け出す方法について説明する。 pythonでのネストされたループを減らすためのよく知られた方法を考察。 2重のネストループ程度であればありがちな例でも問題ないが、3重、4重となってくるとitertoolsのありがたみがわかる。 10×10の座標を全走査するときなど while leaving the tee object at its current position. itertoolsモジュールは、イテレータの使い方としてよくある実装をライブラリにしたものです。例えば、イテラブルの要素の組み合わせパターンを全て取得したい場合などに便利です。このモジュールは多くの関数を実装していますが、本記事では主なものをいくつかピックアップしてまとめます。 of 7 runs, 10 loops each), # 98.8 ms ± 579 µs per loop (mean ± std. ", # unique_everseen('AAAABBBCCDAABBB') --> A B C D, # unique_everseen('ABBCcAD', str.lower) --> A B C D, "List unique elements, preserving order. It has a set lightweight, memory-efficient and fast tools for performing iterator algebra . 9.7. itertools — Functions creating iterators for efficient looping New in version 2.3. dev. Converts a call-until-exception interface to an iterator interface. Page Contents itertools – Iterator functions for efficient looping Merging and Splitting Iterators Converting Inputs Producing New Values Filtering Grouping Data Merging and Splitting Iterators The chain() function takes several iterators as arguments and returns a single iterator that produces the contents of all of them as though they came from a single sequence. of 7 runs, 10 loops each), # 22.6 ms ± 345 µs per loop (mean ± std. For example, product (A, … If n is None, consume entirely.". dev. dev. It … Remember all elements ever seen. # Use functions that consume iterators at C speed. "Collect data into fixed-length chunks or blocks", # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx, "roundrobin('ABC', 'D', 'EF') --> A D E B F C", "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)", "List unique elements, preserving order.